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Abstract
The relative distribution of rare-earth ions R3+ (Dy3+ or Ho3+) in the phosphate
glass RAl0.30P3.05O9.62 was measured by employing the method of isomorphic
substitution in neutron diffraction and, by taking the role of Al into explicit
account, a self-consistent model of the glass structure was developed. The
glass network is found to be made from corner sharing PO4 tetrahedra in which
there are, on average, 2.32(9) terminal oxygen atoms, OT, at 1.50(1) Å and
1.68(9) bridging oxygen atoms, OB, at 1.60(1) Å. The network modifying R3+

ions bind to an average of 6.7(1) OT and are distributed such that 7.9(7) R–
R nearest neighbours reside at 5.62(6) Å. The Al3+ ion also has a network
modifying role in which it helps to strengthen the glass through the formation of
OT–Al–OT linkages. The connectivity of the R-centred coordination polyhedra
in (M2O3)x(P2O5)1−x glasses, where M3+ denotes a network modifying cation
(R3+ or Al3+), is quantified in terms of a parameter fs . Methods for reducing
the clustering of rare-earth ions in these materials are then discussed, based
on a reduction of fs via the replacement of R3+ by Al3+ at fixed total modifier
content or via a change of x to increase the number of OT available per network
modifying M3+ cation.

1. Introduction

The incorporation of rare-earth ions, R3+, into phosphate glasses confers these materials with
many interesting opto-electronic and magneto-optical properties which give them application
as, for example, lasers and Faraday rotators [1–7]. It is therefore desirable to understand the
interactions between the rare-earth ions, and their mediation by the matrix material, in order
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to develop non-phenomenological microscopic models. Hence progress is dependent on the
provision of unambiguous experimental information about both the relative distribution of
the rare-earth ions and the structure of the glassy matrix. This information can in principle
be accessed, at the pair correlation function level, by means of diffraction methods through
measurement of the so-called Faber–Ziman partial structure factors, Sαβ(k), where k is the
magnitude of the scattering vector [8]. The accompanying experimental challenge is, however,
formidable. For instance, samples prepared by fusing RP3O9 in a platinum crucible comprise
three chemical species and are described by six overlapping Sαβ(k) [9]. Moreover, glasses with
superior mechanical properties that enable fibres to be drawn,and which are also water resistant,
can be prepared by fusing a suitable rare-earth oxide with P2O5 in an alumina crucible [10–12].
There is an attendant incorporation of Al into the structure [11] which further complicates the
problem through the introduction of four additional Sαβ(k). The literature on pair correlation
functions in phosphate glasses, and in particular SRR(k), is therefore notable by its paucity.

In this paper, we tackle the problem by applying the method of isomorphic substitution
in neutron diffraction to measure the R–R partial structure factor and related difference
functions for the glassy phosphate (R2O3)0.230(Al2O3)0.069(P2O5)0.701, or RAl0.30P3.05O9.62,
which contains small R3+ ions (Dy3+ or Ho3+) from the heavy element end of the rare-earth
series. The Dy3+ and Ho3+ ions were chosen as isomorphic pairs as they are adjacent in the
periodic table and have comparable cation radii (0.912 cf 0.901 Å for sixfold coordination) [13]
and Pettifor chemical parameters (0.685 cf 0.6825) [14]. They also share a similar structural
chemistry [15, 16], e.g. the crystalline orthophosphates of the small rare-earth ions, c-RPO4,
have a common structure [17, 18]. Likewise, the crystalline metaphosphates, c-RP3O9, of
the small rare-earth ions have a common structure [19], as do the crystalline ultraphosphates,
c-RP5O14 [20, 21].

From a practical point of view, the glasses contain a large mol% of rare-earth ions which
enhances the prospect of identifying the R–R correlation. Furthermore, a variety of other
techniques have been used to investigate the structure of similarly prepared R–Al–P–O glasses,
including extended x-ray absorption fine structure (EXAFS) spectroscopy [22–27], neutron
diffraction [11] and x-ray diffraction [12, 22, 28, 29]. Although trends associated with
the lanthanide contraction [15, 16] have been observed, such as a shortening of the R–O
nearest-neighbour distance, the R–R correlations have not been identified and significant
differences in the structural parameters have been reported. For example, R–O coordination
numbers in the range 5.8(6)–9.2(2.3) have been quoted for a glass with (nominal) composition
(Tb2O3)0.26(P2O5)0.74 together with O–(P)–O coordination numbers in the range 3.4(3)–
4.8(8) [11, 12, 22, 23, 25, 28], where the latter notation refers to oxygen atoms interlinked
by phosphorus. Unambiguous information on these parameters is, however, of basic
importance: the P–O and O–(P)–O peak positions and coordination numbers give insight into
the connectivity of the phosphate network, through the ratio of bridging oxygen sites, OB, to
terminal oxygen sites, OT, on the PO4 tetrahedra, while the R–O coordination parameters help
describe the degree of interlinking between R-centred polyhedra [9, 30–33]. A preliminary
account of the present work on RAl0.30P3.05O9.62 glasses is given elsewhere [34].

The essential theory required to understand the diffraction results will first be given in
section 2. The sample preparation and characterization, together with the neutron diffraction
method, will then be outlined in section 3. The results will be presented in section 4 and the
steps taken to ensure the reliability of the measured SRR(k) and related difference functions
will be explained. In the data analysis procedure, the structures of c-RP3O9 [19, 35] and
c-RP5O14 [21, 36] comprising smallrare-earth cations will be used as a guide for interpreting the
neutron diffraction results. Furthermore, explicit account will be taken of the Al correlations,
by contrast with most previous diffraction and EXAFS studies in which the Al was regarded
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as an impurity atom having a negligible impact on the measured patterns [11, 12, 22–28].
Finally, in section 5, the results for glassy RAl0.30P3.05O9.62 will be discussed using the model
of Hoppe and co-workers [9, 30–33] as a template and they will be compared with those
recently obtained by applying the isomorphic substitution method in neutron diffraction to
glassy RAl0.35P3.24O10.12 [37], where R3+ denotes large cations (La3+ or Ce3+) from the light
element end of the rare-earth series. In particular, the connectivity of the R-centred coordination
polyhedra in these two materials will be considered and methods for controlling the clustering
of rare-earth ions in phosphate glasses will be discussed.

2. Theory

In a neutron diffraction experiment on an R–Al–P–O glass comprising a rare-earth
paramagnetic cation, the differential scattering cross-section per atom for unpolarized neutrons
can be written as(

dσ

d�

)
tot

=
(

dσ

d�

)
mag

+

(
dσ

d�

)
nucl

(1)

where (dσ/d�)mag for Dy3+ or Ho3+ can be calculated in the free-ion approximation by using
the scheme outlined in [38]. The nuclear differential scattering cross-section is given by(

dσ

d�

)
nucl

= F(k) +
∑

α

cα[b2
α + b2

inc,α][1 + Pα(k)] (2)

where the total structure factor is defined by

F(k) =
∑

α

∑
β

cαcβbαbβ[Sαβ(k) − 1], (3)

while cα, bα, binc,α and Pα(k) denote the atomic fraction, coherent scattering length, incoherent
scattering length and inelasticity correction [39] for chemical species α. The accompanying
real-space information is contained in the total pair correlation function G(r) which is obtained
from equation (3) by replacing the Sαβ(k) by the corresponding partial pair distribution
functions gαβ(r).

At the heart of the isomorphic substitution method, which has recently been used with
success to study molten rare-earth compounds [38, 40–43], is the assumption that three glassy
RAl0.30P3.05O9.62 samples can be made that are structurally the same and differ only in the
coherent neutron scattering length, bR, of the rare-earth ion. If three total structure factors
F(k), ′ F(k) and ′′ F(k) are measured corresponding to scattering lengths bR > b′R > b′′R then
those correlations not involving the rare-earth ion can be eliminated by subtracting two total
structure factors to give a first-order difference function such as

�F (1)
R (k) ≡ F(k) − ′′ F(k) = �

(1)
Rµ(k) + c2

Rδ
(1)
R ς

(1)
R [SRR(k) − 1] (4)

where µ (or µ′) denotes a matrix atom (Al, P or O), δ
(1)
R = bR − b′′R, ς

(1)
R = bR + b′′R and

�
(1)
Rµ(k) =

∑
µ

2cRcµbµδ
(1)
R [SRµ(k) − 1]. (5)

The other first-order difference functions are defined by �F (2)
R (k) ≡ F(k) −′ F(k) and

�F (3)
R (k) ≡ ′ F(k) − ′′F(k). It is then possible to eliminate the R–µ correlations by using, for

instance, the combination [44, 45]

�F (1)(k) ≡ F(k) − bR�F (1)
R (k)/δ

(1)
R

= �
(1)
µµ′(k) − c2

RbRb′′R[SRR(k) − 1] (6)
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where

�
(1)
µµ′(k) =

∑
µ

∑
µ′

cµcµ′bµbµ′[Sµµ′(k) − 1]. (7)

Similarly, �F (2)(k) ≡ F(k) − bR�F (2)
R (k)/δ

(2)
R where δ

(2)
R = bR − b′R and �F (3)(k) ≡

′ F(k) − b′R�F (3)
R (k)/δ

(3)
R where δ

(3)
R = b′R − b′′R.

The difference functions represented by equations (4) and (6) are particularly useful if
only two structure factors are measured in an experiment [44]. However, the measurement of
three total structure factors enables SRR(k) to be extracted through the second-order difference
function [45, 46]

SRR(k) − 1 = [(1 − γ )F(k) − ′ F(k) + γ ′′ F(k)][c2
Rγ (1 − γ )(δ

(1)
R )2]−1 (8)

where γ = δ
(2)
R /δ

(1)
R and (1 − γ ) = δ

(3)
R /δ

(1)
R with 0 < γ < 1. The R–µ correlations

can then be isolated by the elimination of SRR(k) from equation (4) to give equation (5)
and the remaining functions �

(2)
Rµ(k) and �

(3)
Rµ(k) follow from similar expressions such that

�
(1)
Rµ(k)/δ

(1)
R = �

(2)
Rµ(k)/δ

(2)
R = �

(3)
Rµ(k)/δ

(3)
R . The µ–µ′ correlations can also be isolated by

the elimination of SRR(k) from equation (6) to give equation (7) and the remaining functions
�

(2)
µµ′(k) and �

(3)
µµ′(k) follow from the elimination of SRR(k) from �F (2)(k) and �F (3)(k)

respectively such that all three �
(i)
µµ′(k) (i = 1, 2, 3) are identical. Hence the total structure

factor F(k) can be written as

F(k) = c2
Rb2

R[SRR(k) − 1] +
bR

δ
(1)
R

�
(1)
Rµ(k) + �

(1)

µµ′(k) (9)

which emphasizes its separation into a linear combination of the R–R, R–µ and µ–µ′
correlation functions. The r -space representation of SRR(k) is the partial pair distribution
function gRR(r) while the r -space representations of difference functions such as �

(i)
Rµ(k) and

�
(i)
µµ′(k) (i = 1, 2, 3) are denoted by �G(i)

Rµ(r) and �G(i)
µµ′(r) respectively and are obtained

from the above equations for the k-space functions by replacing the Sαβ(k) by the corresponding
partial pair distribution function, gαβ(r). The limiting values of these functions, �G(i)

Rµ(0) and

�G(i)
µµ′(0), follow from setting all of the gαβ(0) = 0. The mean coordination number of β

around α is denoted by n̄β
α .

In practice, a measured total structure factor will be truncated by the finite measurement
window of the diffractometer M(k � kmax) = 1, M(k > kmax) = 0 such that the accompanying
r -space information is distorted by the modification function

M(r) = 1

π

∫ kmax

0
dk cos(kr) = 1

πr
sin(kmaxr). (10)

The difference functions are likewise modified and in order to gauge the extent of distortion it
is useful to consider the r -space representation of the second-order difference function in the
form

d ′
RR(r) = dRR(r) ⊗ M(r), (11)

where dRR(r) = 4πn0r [gRR(r) − 1], n0 is the atomic number density and ⊗ denotes the one-
dimensional convolution operator. Useful r -space representations of the total pair correlation
function and other main difference functions, in which the modification function retains its
symmetrical form, are

D′(r) = 4πn0r

|G(0)|G(r) ⊗ M(r), (12)

�D′ (i)
Rµ (r) = 4πn0r

|�G(i)
Rµ(0)|�G(i)

Rµ(r) ⊗ M(r), (13)
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and

�D′ (i)
µµ′ (r) = 4πn0r

|�G(i)
µµ′(0)|�G(i)

µµ′(r) ⊗ M(r) (14)

where the normalization of these functions,by |G(0)|, |�G(i)
Rµ(0)| and |�G(i)

µµ′(0)| respectively,
ensures that the weighting factors of the gαβ(r) sum to unity such that the low-r limit in all
cases is given by −4πn0r .

To enable those features that are an artifact of M(r) to be distinguished, each peak j in
rgαβ(r) can be represented by a Gaussian centred at rαβ( j) with standard deviation σαβ( j)
and area corresponding to a coordination number, n̄β

α( j), of species β around α. Then, for
example, a measured R–µ difference function can be fitted by least squares to a sum of these
Gaussians convoluted with M(r) such that

�D′ (i)
Rµ (r) =

∑
j

[
Wαβ( j)n̄β

α( j)√
2πcβ( j)rαβ( j)σαβ( j)

exp

(−(r − rαβ( j))2

2σ 2
αβ( j)

)
⊗ M(r)

]
− 4πn0r (15)

where Wαβ( j) = WRµ( j) = 2cRcµbµδ
(i)
R /|�G(i)

Rµ(0)|. The right-hand side of equation (15)

also holds for d ′
RR(r), provided the Wαβ( j) are set equal to unity, and for the �D′ (i)

µµ′ (r)

difference functions, provided Wαβ( j) = c2
µb2

µ/|�G(i)
µµ′(0)| if α = β = µ and Wαβ( j) =

2cµcµ′bµbµ′/|�G(i)
µµ′(0)| if α(=µ) �= β(=µ′). In general, the peaks fitted at the larger r

values are not expected to yield accurate parameters, owing to the overlap from correlations
at even larger r , but are included to increase the reliability of the parameters that are reported
for the peaks fitted at smaller r .

3. Experimental details

The three samples required for the diffraction experiments were made by fusing Dy2O3

(99.9%), Ho2O3 (99.9%) or an equal mixture of Dy2O3 and Ho2O3 with P2O5 (99%) in
alumina (Al2O3) crucibles (Anderman). The dry oxide powders were mixed in an R2O3:P2O5

ratio of 0.15:0.85 which was chosen to ensure an excess of P2O5, relative to the metaphosphate
composition (R2O3)0.25(P2O5)0.75, much of which sublimes during the glass preparation
procedure. The powder mixtures (of mass ≈ 25 g) were initially allowed to absorb a fixed
small amount (≈100 mg) of atmospheric water at room temperature before the crucible with
its lid were placed into a preheated oven at 500 ◦C for 1 h.5 The crucible was then moved to
another oven at 1000 ◦C, left for 30 min, and finally transferred to a third oven at 1680 ◦C.
After 30 min the melt was poured into a preheated graphite mould and annealed at 500 ◦C for
24 h. The resultant glasses were transparent, free from bubbles and visibly homogeneous.

Although all of the glasses were prepared using an identical method, the crucibles were
not sealed and the process by which the Al is incorporated into the glassy matrix is difficult to
control. This precluded the use of expensive rare-earth isotopes and application of the isotopic
substitution method in neutron diffraction [45–48]. Instead, it was necessary to prepare many
samples and then select those with matching compositions, 1 R:0.30(3) Al:3.05(11) P:9.62(35)
O, after investigation using electron probe micro-analysis. In the latter experiments, a cross-
section was taken through each sample to examine the bulk material at several points and
the glass composition was thereby found to be microscopically homogeneous. Factors aiding
sample homogeneity are, presumably, the use of a small sample volume, which gives rise
to a large contact area between the melt and crucible surface, and the fluidity of the melt at

5 Test experiments indicate that a small initial water content helps to promote the formation of glassy materials.
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Table 1. Weighting factors (in mbarn) for the RAl0.30P3.05O9.62 glasses.

SRR(k) SRP(k) SRO(k) SRAl(k) SPP(k) SPO(k) SPAl(k) SOO(k) SAlO(k) SAlAl(k)

Dy F(k) 13.2(3) 25.6(3) 91.7(1.1) 1.70(2) 12.51(5) 89.4(2) 1.656(4) 159.8(2) 5.919(10) 0.0548(2)
mix F(k) 7.5(1) 19.3(2) 69.1(6) 1.28(1) 12.51(5) 89.4(2) 1.656(4) 159.8(2) 5.919(10) 0.0548(2)
Ho F(k) 3.29(7) 12.8(1) 45.8(5) 0.849(9) 12.51(5) 89.4(2) 1.656(4) 159.8(2) 5.919(10) 0.0548(2)

�F(1)
R (k) 9.9(3) 12.8(3) 45.8(1.2) 0.85(2) — — — — — —

�F(2)
R (k) 5.7(4) 6.3(4) 22.6(1.3) 0.42(2) — — — — — —

�F(3)
R (k) 4.2(2) 6.5(2) 23.2(8) 0.43(1) — — — — — —

�
(1)
Rµ(k) — 12.8(3) 45.8(1.2) 0.85(2) — — — — — —

�F(1)(k) −6.6(1.4) — — — 12.51(5) 89.4(2) 1.656(4) 159.8(2) 5.919(10) 0.0548(2)
�F(2)(k) −9.9(1.5) — — — 12.51(5) 89.4(2) 1.656(4) 159.8(2) 5.919(10) 0.0548(2)
�F(3)(k) −4.95(6) — — — 12.51(5) 89.4(2) 1.656(4) 159.8(2) 5.919(10) 0.0548(2)

�
(1)

µµ′ (k) — — — — 12.51(5) 89.4(2) 1.656(4) 159.8(2) 5.919(10) 0.0548(2)

the high temperatures utilized, which helps to distribute the alumina dissolved at the crucible
surface throughout the bulk material. It was found that, by comparison with phosphate glasses
containing large rare-earth cations [37, 49], a relatively small distribution of compositions
resulted. The mass density was determined by measuring the sample weight in fluids of
different density and n0 = 0.0715(6) Å−3 was thereby deduced for each of the glasses.

The neutron diffraction experiments were performed using the D4C instrument at the
Institut Laue–Langevin (Grenoble) with an incident neutron wavelength of 0.7100 Å [50, 51].
The coarsely powdered samples were held at ambient temperature (≈25 ◦C) in a cylindrical
vanadium can of 4.8 mm internal diameter and 0.1 mm wall thickness and diffraction patterns
were taken for the samples in their container, the empty container and a vanadium rod
of dimensions comparable to the sample for normalization purposes. The intensity for a
cadmium neutron-absorbing rod of similar diameter to the sample was also measured to
account for the effect of sample self-shielding on the background count rate at small scattering
angles [52]. Each complete diffraction pattern was built up from the intensities measured for
the different detector groups. These intensities were saved at regular intervals and no deviation
between them was observed, apart from the expected statistical variations, which verified the
diffractometer stability [50, 51, 53]. The total paramagnetic scattering cross-sections of Dy3+

and Ho3+ at the incident neutron wavelength were calculated using the method given in [38].
The coherent neutron scattering lengths bHo = 8.01(8), bAl = 3.449(5), bP = 5.13(1) and
bO = 5.803(4) fm were taken from Sears [54]. For thermal neutrons, however, resonance
effects make the scattering length of 164Dy sensitive to the incident neutron energy [55]. Breit–
Wigner theory [56] was therefore used to modify the 164Dy coherent scattering length from
49.4(2) fm for 1.798 Å wavelength neutrons [54] to 46.3(2) fm for 0.71 Å wavelength neutrons,
taking into account a resonance for 164Dy at −1.88 eV [57]. An overall Dy scattering length
bDy = 16.0(2) fm was thereby deduced compared with a value of 16.9(2) fm at 1.798 Å [54].
The weighting factors for the Sαβ(k) appearing in the various formulae are given in table 1 and
�

(1)
Rµ(k) = 2.03 �

(2)
Rµ(k) = 1.97 �

(3)
Rµ(k) while �

(1)

µµ′(k) = �
(2)

µµ′(k) = �
(3)

µµ′(k).
At each stage of the data analysis procedure, described in [45], a full set of reliability

checks was performed to test the efficacy of the isomorphic assumption. For example, each
measured difference function should obey the usual sum-rule relation and give rise to a well
behaved real-space function: this should oscillate about the calculated low-r limit and, when the
oscillations are set to this limit, its back Fourier transform should be in good overall agreement
with the original reciprocal space data set. Furthermore, as three different routes may be used
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Figure 1. The measured total structure factors Dy F(k), mix F(k) and Ho F(k) for glassy
RAl0.30P3.05O9.62. The data are represented by the points with error bars and the solid curves
are the back Fourier transforms of the corresponding D′(r) after the unphysical low-r oscillations
are set to the calculated limit of −4πn0r (see figure 2). The back Fourier transforms are almost
indistinguishable from the data points on the plot scale at most k values.

to construct the experimental difference functions, the three �
(i)
Rµ(k)/δ

(i)
R (i = 1, 2, 3) should

be the same within the statistical uncertainties and, likewise, the three �
(i)
µµ′(k) (i = 1, 2, 3).

4. Results

The measured total structure factors are shown in figure 1 and are denoted by Dy F(k), mix F(k)

and Ho F(k) where ‘mix’ denotes a 1:0.97 mixture of Dy and Ho and bDy > bmix > bHo.
There is good overall agreement between each F(k) and the back Fourier transform of the
corresponding total pair correlation function D′(r), after the unphysical low-r oscillations are
set to their calculated limit of −4πn0r (see figure 2), which indicates that the data correction
procedures have been properly applied [45]. The total structure factors show a clear contrast
in signal as demonstrated by the difference functions �F (i)

R (k) and �F (i)(k) (i = 1, 2, 3)
illustrated in figure 3. The three �F (i)

R (k) have distinct features at smaller k values that can be
attributed to the SRR(k) partial structure factor: unlike the weighting factor for SRR(k) in the
expression for �F (i)

R (k), the weighting factors for the R–µ correlations have the same relative
ratio in each function (see table 1). The measured �F (i)(k) also have distinct features that can
be attributed to SRR(k) as the weighting factors for the µ–µ′ correlations are identical in all
three functions.

The measured total structure factors, represented by the error bars in figure 1, were used
in equation (8) to extract the partial structure factor SRR(k) shown in figure 4. The high-k
oscillations of this function are heavily damped which implies that the effect of the modification
function will be small, i.e. we will take d ′

RR(r) = dRR(r) in the following discussion. The
dominant features in SRR(k) are two peaks at low k which motivated a smooth truncation of
the data, by application of a cosine window function over the region 4 � k (Å−1) � 5 prior
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Figure 2. The total pair correlation function D′(r) for glassy DyAl0.30P3.05O9.62, obtained by
Fourier transforming the total structure factor Dy F(k) given by the points with error bars in figure 1,
together with the difference functions �D′ (1)

Rµ (r) and �D′ (1)

µµ′ (r), obtained by Fourier transforming

the difference functions �
(1)
Rµ(k) and �

(1)

µµ′ (k) given by the points with error bars in figures 6 and 7
respectively. The calculated low-r limit of all these functions is equal to −4πn0r and is shown by
the dashed curves.

to Fourier transformation, in order to identify the corresponding main features in r space.
The resultant pair correlation function dRR(r), shown in figure 5(a), has a first peak at
5.65(2) Å giving n̄R

R = 8.6(2) with no clearly identifiable features at lower r . Next, the
entire k-space range of SRR(k) was transformed and the resultant dRR(r) also shows a strong
peak at a comparable position of 5.55(2) Å giving n̄R

R = 7.9(2). More pronounced features are
observed at lower r but these could not be definitively identified with unwanted correlations
(cf [48]): for example, when the oscillations for 0 � r (Å) � 5.1 (including the peak at 4.72 Å)
are set to the low-r limit of −4πn0r and the data are back Fourier transformed the resultant
function is in reasonable agreement with the measured SRR(k) over the entire k-space range
(figure 4). Finally, the minimum-noise reconstruction method was used [58], which gives,
essentially, a smooth dRR(r) that is constrained to take physical values, i.e. dRR(r) = −4πn0r
for 0 � r � rmin and dRR(r) � −4πn0r for r > rmin, with rmin varied between 4.5 and 5.1 Å.
A first peak at 5.65(2) Å was obtained, with n̄R

R = 7.2(2), and no physical features could be
generated for 4.5 � r (Å) � 5.1. Thus, the diffraction data identify a first-nearest-neighbour
R–R distance of 5.62(6) Å with n̄R

R = 7.9(7) together with intermediate-range ordering of
the R–R correlations extending beyond 15 Å (figure 5(a)). This picture is consistent with
the structure of c-RP3O9, in which eight nearest-neighbour R–R ions reside in the range
5.4–7.0 Å [35], and the absence of R–R correlations at r � 4 Å is in accord with other
studies [7, 11, 12, 25, 26]. The observed R–R nearest-neighbour distance of 5.62(6) Å in the
glass compares with a value of 5.80 Å expected from a uniform distribution of R3+ ions in
which their separation is maximized.

The �
(i)
Rµ(k) (i = 1, 2, 3) are shown in figure 6 and were extracted from the first-

order difference functions �F (i)
R (k) by using equation (4) with SRR(k) taken from the solid

curve in figure 4. Unlike the �F (i)
R (k) (see figure 3(a)), the �

(i)
Rµ(k)/δ

(i)
R are comparable

within the statistical uncertainties, as indicated by the differences [�(1)
Rµ(k) − 2.03�

(2)
Rµ(k)]
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Figure 3. The measured difference functions (a) �F(i)
R (k) and (b) �F(i)(k) for glassy

RAl0.30P3.05O9.62 obtained from the total structure factors given in figure 1 by using equations (4)
and (6) respectively. The data are represented by the points with error bars and the solid curves
are the back Fourier transforms of the corresponding r-space functions after the unphysical low-r
oscillations are set to the calculated limit of −4πn0r . The back Fourier transforms are almost
indistinguishable from the data points on the plot scale at most k values. Each set of curves for
�F(i)

R (k) (i = 1, 2, 3) or �F(i)(k) (i = 1, 2, 3) has contrasting features that are most noticeable
at smaller k values and which can be attributed to the presence with different weighting factors of
the SRR(k) partial structure factor (see the text).

and [�(1)
Rµ(k) − 1.97�

(3)
Rµ(k)], which points to a correct data analysis procedure [45]. The

r -space function �D′ (1)
Rµ (r), obtained by direct Fourier transformation of �

(1)
Rµ(k), is shown

in figure 2. For c-ErP3O9 the shortest R–O, R–(O)–P and R–R distances are 2.17, 3.49 and
5.37 Å respectively and the second-nearest-neighbour R–O distance is 3.83 Å [35], where
R–(O)–P denotes R and P interlinked by O. The corresponding distances are 2.29, 3.60, 5.71
and 3.99 Å for c-HoP5O14 [36] and 2.31, 3.01, 3.75 and 4.14 Å for c-HoPO4 [18]. Hence
only R–O correlations are expected for r � 3 Å and the first peak in �D′ (1)

Rµ (r) at 2.27 Å was

identified with R–O correlations and the second peak at 3.62 Å with R–(O)–P correlations. To
take into account the effect of the modification function M(r), the data were fitted over the
range 2.0 � r (Å) � 3.4 by using equation (15) and the results are shown in figure 5(b). The
procedure gave a goodness-of-fit parameter Rχ [59] of 1.3% and yielded nearest-neighbour
Gaussians corresponding to n̄O

R = 6.2(1) at 2.30(1) Å and n̄O
R = 0.5(1) at 2.67(1) Å. The results

therefore show an R3+ ion coordination environment that is distorted relative to c-RP3O9, in
which six R–O neighbours reside in the range 2.17 � r (Å) � 2.29 [35], and the overall
coordination number n̄O

R = 6.7(1) in the glass compares with n̄O
R = 8 for 2.29 � r (Å) � 2.41

in c-RP5O14 [36].
The full set of parameters describing the Gaussians fitted to �D′ (1)

Rµ (r) is given in
table 2. Within the experimental error, these are the same as the parameters obtained by
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Figure 4. The partial structure factor SRR(k) for glassy RAl0.30P3.05O9.62 obtained from the total
structure factors given in figure 1 by use of equation (8). The measured data are represented by the
points with error bars while the dashed curve gives the minimum noise solution and the solid curve
gives the back Fourier transform of dRR(r) shown by the circles in figure 5(a) after the unphysical
low-r oscillations are set to the calculated limit of −4πn0r .

Table 2. Parameters obtained from the Gaussian fit to the �D′ (1)
Rµ (r) difference function for

glassy RAl0.30P3.05O9.62.

Correlation (α–β) rαβ (Å) n̄β
α σαβ (Å)

R–O 2.30(1) 6.2(1) 0.11(1)
R–O 2.67(2) 0.5(1) 0.11(1)
R–(O)–P 3.25(2) 1.1(2) 0.11(2)
R–(O)–P 3.60(2) 6.0(2) 0.10(2)

fitting �D′ (2)
Rµ (r) and �D′ (3)

Rµ (r), i.e. no change in the first-nearest-neighbour R–O distance

was found that could be attributed to a difference of 0.011 Å between the radii of Dy3+ and
Ho3+ [13]. Although a small systematic increase of the first-nearest-neighbour R–O distance
with increasing cation radius was observed when fitting the D′(r) functions, the change was
within the error of ±0.01 Å on a peak position. Hence, diffraction data extending to high
k values that give enhanced r -space resolution would be required to identify any effects that
arise from the lanthanide contraction [15, 16].

The �
(i)
µµ′(k) (i = 1, 2, 3) are shown in figure 7 and were extracted from the �F (i)(k) by

using equation (6) with SRR(k) taken from the solid curve in figure 4. Unlike the �F (i)(k) (see
figure 3(b)), the �

(i)
µµ′(k) are comparable within the statistical uncertainties, as indicated by

the differences [�(1)

µµ′(k) − �
(2)

µµ′(k)] and [�(1)

µµ′(k) − �
(3)

µµ′(k)], which points to the absence of

any substantial systematic error [45]. The r -space function �D′ (1)
µµ′ (r), obtained by direct

Fourier transformation of �
(1)
µµ′(k), is shown in figure 2. In c-ErP3O9 the shortest P–O,

O–(P)–O and P–(O)–P distances are 1.40, 2.32 and 2.89 Å respectively [35], where O–
(P)–O denotes oxygen atoms interlinked by phosphorus and P–(O)–P denotes phosphorus
atoms interlinked by O, and the corresponding distances are 1.44, 2.38 and 2.86 Å for
c-HoP5O14 [36]. In c-HoPO4, the PO4 units are isolated and the shortest P–O, O–(P)–O
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Figure 5. The circles give the real-space functions (a) dRR(r), (b) �D′ (1)
Rµ (r) and (c) �D′ (1)

µµ′ (r)
obtained by Fourier transforming the reciprocal space functions shown in (a) figure 4, (b) figure 6
and (c) figure 7 respectively. The dotted arrows point to the relevant abscissa scale. In (a) the solid
curve gives the minimum information solution and the dashed curve shows the effect of smoothly
truncating SRR(k) by using a cosine function. In (b) and (c), the solid curves give the fitted function
and the other curves the individual convoluted Gaussians: in (b) R–O (dotted curves) and R–P
(dashed curves); in (c) P–O (dotted curves), Al–O (dashed curve) and O–O (long-dashed curves).
Several of the larger-r Gaussians are omitted from (c) for clarity of presentation. The solid arrow
in (c) points to the Al–O Gaussian peak position.

and P–P distances are 1.53, 2.40 and 3.75 Å respectively [18]. The first peak in �D′ (1)
µµ′ (r)

at 1.53(2) Å was therefore assigned to the P–O correlations from PO4 tetrahedra and the
corresponding O–(P)–O correlations will give a strong contribution to the second peak at
2.52(2) Å. The region between these two peaks, 1.7 � r (Å) � 1.9, will have a contribution
from Al–O correlations since 27Al nuclear magnetic resonance experiments,made on rare-earth
phosphate glasses prepared in alumina crucibles [11], show that Al can be fourfold, fivefold
or sixfold coordinated to oxygen. In c-AlP3O9 [60], aluminium is octahedrally coordinated
to oxygen at a distance rAlO = 1.88 Å giving an O–(Al)–O nearest-neighbour separation
of

√
2rAlO = 2.66 Å, placing these correlations under the second peak in �D′ (1)

µµ′ (r). By

comparison, for tetrahedral coordination rAlO = 1.76 Å [61], giving an O–(Al)–O distance of√
8/3rAlO = 2.87 Å in the region between the second and third peaks in �D′ (1)

µµ′ (r). The second
peak has, therefore, contributions only from O–(P)–O and O–(Al)–O correlations whilst the
third peak was modelled assuming P–(OP)–O, P–(O)–P, O–(R)–O and Al–(O)–P correlations
using the structures of c-RP3O9 [19, 35] and c-AlP3O9 [60] as starting points.

As detailed in section 2, a Gaussian fit to �D′ (1)

µµ′ (r) taking into account the effect of the

modification function, M(r), was made over the range 1.2 � r (Å) � 2.9 and gave Rχ = 2.0%
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Figure 6. The R-matrix atom difference functions �
(i)
Rµ(k) (i = 1, 2, 3) for glassy

RAl0.30P3.05O9.62 obtained by subtracting SRR(k) shown by the solid curve in figure 4 from the
�F(i)

R (k) shown in figure 3(a) following equation (4). The bars represent the statistical errors on

the data points and the solid curves are the back Fourier transforms of the corresponding �D′ (i)
Rµ (r)

after the unphysical low-r oscillations are set to the calculated limit of −4πn0r (see figure 2). The
scaled functions should be identical and the differences between them should therefore be zero
within the statistical error.
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Figure 7. The matrix–matrix atom difference functions �
(i)
µµ′ (k) (i = 1, 2, 3) for glassy

RAl0.30P3.05O9.62 obtained by subtracting SRR(k) shown by the solid curve in figure 4 from the
�F(i)(k) shown in figure 3(b) following equation (6). The bars represent the statistical errors on
the data points and the solid curves are the back Fourier transforms of the corresponding �D′ (i)

µµ′ (r)
after the unphysical low-r oscillations are set to the calculated limit of −4πn0r (see figure 2). The
functions should be identical on the plotted scale and the differences between them should therefore
be zero within the statistical error.

(see figure 5(c)). Two Gaussians were used to represent the first peak, with n̄OT
P = 2.32(9)

at 1.50(1) Å and n̄OB
P = 1.68(9) at 1.60(1) Å, giving an overall P–O coordination number

n̄O
P = 4.0(1). These values for the P–OT and P–OB bond lengths are typical of those found
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Table 3. Parameters obtained from the Gaussian fit to the �D′ (1)

µµ′ (r) difference function for
glassy RAl0.30P3.05O9.62.

Correlation (α–β) rαβ (Å) n̄β
α σαβ (Å)

P–OT 1.50(1) 2.32(9) 0.06(1)
P–OB 1.60(1) 1.68(9) 0.09(1)
Al–O 1.89(2) 5.5(5) 0.12(1)
O–(P)–O 2.45(1) 2.3(1) 0.13(1)
O–(P)–O 2.54(1) 1.4(1) 0.06(1)
O–(Al)–O 2.65(1) 0.7(1) 0.12(1)
P–(OP)–O 2.93(2) 4.0(1) 0.13(1)
P–(O)–P 2.98(2) 2.0(1) 0.10(1)

in other rare-earth phosphate glasses of similar composition [9, 11, 33] and a peak width for
P–OB that is broader than for P–OT is a typical feature of phosphate glasses [32]. A distance
rAlO = 1.89(2) Å was found, in accord with [11, 12], with n̄O

Al = 5.5(5). The second peak
was fitted with Gaussians centred at 2.45(1), 2.54(1) and 2.65(1) Å corresponding to O–(P)–O
coordination numbers of 2.3(1) and 1.4(1) and an O–(Al)–O coordination number of 0.7(1)
respectively i.e. the overall O–(P)–O nearest-neighbour coordination number n̄O

O = 3.7(1).
A single Gaussian fit to the O–(P)–O correlations under the second peak was found to be
inadequate, giving a higher Rχ value of 6.2%, and the use of two Gaussians to represent the
O–(P)–O correlations was also found to be necessary for R–Al–P–O glasses containing large
rare-earth ions [37]. The small peak at 2 Å was found to be mostly an artefact of M(r), the effect
of which may be reduced by using a diffractometer which accesses a larger k range. The full
set of parameters describing the fitted Gaussians is given in table 3. Within the experimental
error, these are the same as the parameters obtained by fitting �D′ (2)

µµ′ (r) and �D′ (3)
µµ′ (r).

5. Discussion

In crystalline and glassy P2O5, a network is built from corner-sharing PO4 tetrahedra
comprising one terminal oxygen atom, OT, and three bridging oxygen atoms, OB, at distances
close to 1.4 and 1.6 Å respectively [6, 62–66]. In the model of Hoppe and co-workers [9, 30–
33], the addition of a network modifier such as R2O3 leaves the PO4 tetrahedra intact
but depolymerizes the phosphate network through the breakage of P–OB–P bonds, thereby
increasing the fraction of OT to which the R3+ ions are exclusively bound via P–OT–R linkages.
Specifically, if y oxygen atoms from the network modifier are added per P2O5 unit, the P:OB:OT

ratio changes from 2:3:2 in pure P2O5 to 2:(3 − y):2(1 + y) in the modified material. The
overall O–(P)–O nearest-neighbour coordination number is then given by

n̄O
O = (3 − y)

(5 + y)
n̄O

OB
+

2(1 + y)

(5 + y)
n̄O

OT
≡ [n̄O

O]B + [n̄O
O]T (16)

where n̄O
OB

= 6 and n̄O
OT

= 3 such that n̄O
O = 24/(5 + y) [31]. In equation (16), [n̄O

O]B and [n̄O
O]T

represent the fractional O–(P)–O coordination numbers associated with bridging and terminal
oxygen sites respectively. Since P–OB bonds are longer than P–OT bonds, the mean O–(P)–O
distance associated with the bridging sites is anticipated to be longer than for the terminal sites.
The nearest-neighbour P–(OB)–P coordination number is given by n̄P

P = 3 − y.
In the case of R–Al–P–O compounds it can be readily shown that y = 2cO/cP−5, provided

Al acts as a network modifier, and it then follows that the R:OT ratio is given by 1:2[cO−2cP]/cR.
When Al is absent, the composition can be written as (R2O3)x(P2O5)1−x , where x is one-half,
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Table 4. Parameters describing the R3+ coordination environment in several crystalline rare-earth
phosphates. Small R refers to Ho or Er and large R to La or Ce.

R size Crystal R–R (min) Å R:OT n̄OT
R fs References

Small RP5O14 5.71 8 8 0 [36]
RP3O9 5.37 6 6 0 [35]
RPO4 3.75 4 8 1/2 [18]

Large RP5O14 5.25 8 8 0 [67]
RP3O9 4.32 6 8 1/4 [68]
RPO4 4.10 4 9 5/9 [69]

one-quarter or one-sixth for the ortho-, meta- and ultra-phosphates respectively, in which case
y = 3x/(1 − x) and the R:OT ratio becomes 1:(1 + 2x)/x [33]. Hence O–(P)–O coordination
numbers, which are in agreement with the observed values for several crystalline R–P–O
systems, can be calculated: n̄O

O is 4.8 for c-P2O5 [16, 65, 66], 4.29 for c-RP5O14 [35, 67], 4.0 for
c-RP3O9 [19, 68] and 3.0 for c-RPO4 [18, 69]. Furthermore, in the meta- and ultra-phosphate
crystalline phases of small rare-earth ions, R3+ is bound to six or eight OT respectively, equal
to the number of OT available per rare-earth ion (see table 4). None of the bonded OT need,
therefore, to be shared between the R-centred coordination polyhedra. By contrast, in the meta-
and ultra-phosphate crystalline phases of large rare-earth ions, R3+ is bound to eight OT in both
cases such that 25% of the bonded OT need to be shared in the case of the metaphosphates.

For glassy RAl0.30P3.05O9.62, the Al–O peak position and coordination number suggest
that a substantial number of the Al atoms adopt octahedral conformations as in crystalline [60]
and glassy [70] AlP3O9—i.e. Al2O3 appears to act primarily as a network modifier, akin to
R2O3, from which we deduce y = 1.320. Hence we calculate that each P is on average bound
to 1.68 OB and 2.32 OT with [n̄O

O]B = 1.59 and [n̄O
O]T = 2.20, giving an overall O–(P)–O

coordination number n̄O
O = 3.79. All of these parameters are in accord with those obtained

from the fit to �D′ (1)
µµ′ (r) (see table 3) which implies that the Hoppe et al model [9, 30–33]

can act as an excellent starting point for understanding the structure of rare-earth phosphate
glasses, even when they incorporate a significant mol% of Al impurity atoms.

Furthermore, for sixfold coordinated Al an OT–(Al)–OT coordination number of n̄O
O =

48cAl/(5 + y)cP = 0.75 at
√

2rAlO = 2.66 Å is anticipated, while for tetrahedrally coordinated
Al a coordination number of n̄O

O = 24cAl/(5 + y)cP = 0.37 at
√

8/3rAlO = 2.87 Å is expected.
Thus the available information on the OT–(Al)–OT correlations, summarized in table 3, is also
consistent with a predominantly octahedral coordination environment for aluminium, the role
of which is to bridge PO4 tetrahedra via OT–Al–OT linkages, thereby strengthening [11, 12]
the glass network. Small highly charged cations in phosphate glasses are also considered
to strengthen the P–OB–P linkages and form bonds with OT that are resistant to hydration,
thereby enhancing the chemical durability of the glass [71]. It will be interesting to see
the extent to which a polarizable, formal charge ionic interaction model can account for the
observed phenomena [41–43].

The method of isomorphic substitution in neutron diffraction has also been recently applied
to glassy RAl0.35P3.24O10.12, where R3+ denotes La3+ or Ce3+ which are at the large-cation-
radius end of the rare-earth series [37]. The materials were prepared in alumina crucibles and
the difference functions �FR(k) and �F(k) were measured. The glass structure was again
found to be based on a network of PO4 tetrahedra, in which there are on average 2.2(1) OT

at 1.51(1) Å and 1.8(1) OB at 1.60(1) Å, and the network modifying rare-earth ions bind to a
larger number of 7.5(2) OT in a distribution that is both broad and asymmetric. The overall
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results are also consistent with a network modifying role for Al and could be interpreted by
using the model of Hoppe and co-workers [9, 30–33]. By reference to the recent 27Al nuclear
magnetic resonance (NMR) experiments of Karabulut et al [72] on (M2O3)x(P2O5)1−x glasses,
where M3+ is a modifying cation chosen to be La3+, Al3+ or a mixture of the two, Martin et al
[37] developed a model for the Al–OT coordination number n̄O

Al. Specifically, when the OT

bound to Al are not shared between other R- or Al-centred coordination polyhedra (i.e. when
Al–OT–Al or Al–OT–R linkages do not occur) then

n̄O
Al = 2(cO − 2cP) − (1 − fs)cRn̄O

R

cAl
(17)

where fs is the fraction of OT atoms bonded to R3+ that are shared between R-centred
coordination polyhedra. If cR = 0, equation (17) reduces to the usual Al–OT coordination
number for Al2O3–P2O5 glasses when Al–OT–Al linkages are not formed [73]. When there
is no Al present, equation (17) can be solved for fs to give the expected values summarized in
table 4 for the crystalline rare-earth phosphates.

In the case of the present Dy/Ho containing RAl0.30P3.05O9.62 glass, n̄O
R = 6.7, n̄O

Al = 5.5
and the atomic fractions are cR = 0.072, cAl = 0.021, cP = 0.218 and cO = 0.689 whereupon
fs takes on a value of 19%. For this class of R–Al–P–O glasses containing small rare-earth ions,
the dependence of n̄O

Al on composition, and hence the connectivity parameter fs , are however
unknown. By comparison, Karabulut et al[72] studied two series of (M2O3)x(P2O5)1−x glasses
where the O:P ratio was fixed at 3.0 for series I, corresponding to x = 0.25, and at 3.143 for
series II, corresponding to x = 0.30. The rare-earth cation, La3+, was then systematically
replaced by Al3+ at fixed total modifier content and the change in the Al–OT coordination
number was measured. For both series, fs has been deduced [37] and it is found to decrease
monotonically to zero as Al3+ replaces La3+, most rapidly in the case of series I for which
there is a greater number of OT available per modifying cation, namely 6 compared with 5.33.
For both series, the dependence of fs on the Al–OT:M–OT bond ratio, as calculated from the
expression cAln̄O

Al/(cRn̄O
R + cAln̄O

Al), is shown in figure 8.
The connectivity parameter, fs , is of significance when considering the proximity

of optically active rare-earth ions which can e.g. be paired, through the formation of
R–OT–R bonded dimers, or otherwise clustered, through the formation of higher-dimensional
conformations such as R–OT–R–OT–R bonded chains as in a modified random network
model [74]. This proximity is important since the mechanism for energy transfer between rare-
earth ions has a strong dependence on their separation [75–77]. For example, the clustering of
rare-earth ions on the length scale of a few ångstrom can result in cooperative up-conversion
processes [78–80] that may have a deleterious effect on the operation of optical devices such as
Er-doped fibre amplifiers and lasers [79, 81–83]. On the other hand, efficient energy transfer
between a donor (e.g. Yb3+) and acceptor (e.g. Er3+) ion with minimal back-energy transfer
is beneficial when making up-conversion lasers [84]. It is therefore desirable to have control
of fs , and hence the sharing of OT between R3+ ions, so that the minimum R–R separation
can be set. In the case of the crystalline rare-earth phosphates, this separation is found to be
markedly shorter when fs is finite (see table 4).

For (M2O3)x(P2O5)1−x glasses comprising large rare-earth ions, fs can be minimized
either by the replacement of La3+ by Al3+ at fixed total modifier content or by the alteration of
x to increase the number of OT available per network modifying M3+ cation (see figure 8). A
similar strategy is anticipated to work for small rare-earth R2O3–Al2O3–P2O5 glasses, provided
that the conditions leading to equation (17) hold, and in this context it would be helpful to
have information complementary to that obtained by Karabulut et al [72] on the composition
dependence of the Al–OT coordination number.
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Figure 8. The fraction, fs , of OT atoms bonded to large R3+ ions that are shared between R-centred
coordination polyhedra as calculated from equation (17) for the two series of (M2O3)x (P2O5)1−x

glasses (M3+ = La3+ or Al3+) studied by Karabulut et al [72], plotted as a function of the
Al–OT:M–OT bond ratio. The fs values and Al–OT:M–OT bond ratios were deduced using the
measured n̄O

Al values taken from [72] together with n̄O
R values fixed at those obtained experimentally,

namely 7.2 (series I) or 7.5 (series II) (see [37]). The M:OT ratio is 6 for series I and 5.33 for series
II and the error bars show the effect on fs of varying the n̄O

R values by ±0.2. The effect of this
variation on the Al–OT:M–OT bond ratio is smaller than the symbol size.

6. Conclusions

The present work demonstrates that it is possible to identify the R–R correlations in phosphate
glasses by using the method of isomorphic substitution in neutron diffraction. Furthermore, by
taking the Al correlations into explicit account, it is possible to develop a self-consistent model,
based on that of Hoppe and co-workers [9, 30–33], for the overall structure of R–Al–P–O
glasses comprising small rare-earth ions. In the case of glassy RAl0.30P3.05O9.62 it is found
that a network is formed from corner-sharing PO4 tetrahedra in which there are, on average,
2.32(9) OT at 1.50(1) Å and 1.68(9) OB at 1.60(1) Å. The network modifying rare-earth ions
bind to an average of 6.7(1) OT and are distributed such that 7.9(7) R–R nearest-neighbours
reside at 5.62(6) Å, a distance just short of the R–R separation of 5.80 Å expected from a
uniform distribution of R3+ ions in which their separation is maximized. The Al3+ ion also has
a network modifying role in which it strengthens the glass through the formation of OT–Al–OT

linkages. The connectivity of the R-centred coordination polyhedra in R2O3–Al2O3–P2O5

glasses comprising both small and large rare-earth ions is quantified in terms of a parameter fs .
Methods for reducing the clustering of rare-earth ions in these materials are then discussed,
based on a reduction of fs via the replacement of R3+ by Al3+ at fixed total modifier content
or via a change of the M2O3:P2O5 ratio to increase the number of OT available per network
modifying M3+ cation. The present work should provide a new stimulus for the development
of realistic microscopic models for glassy rare-earth phosphate materials and the isomorphic
approach can be used as an alternative to the method of isotopic substitution in neutron
diffraction to identify the relative distribution of rare-earth ions in a variety of other vitreous
oxides.
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